If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5h+2h^2=7h
We move all terms to the left:
5h+2h^2-(7h)=0
We add all the numbers together, and all the variables
2h^2-2h=0
a = 2; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·2·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*2}=\frac{0}{4} =0 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*2}=\frac{4}{4} =1 $
| -1.2x+2.4=-3.84 | | -20=p/25 | | 15m2+30m-6=0 | | 1.5x+3x=60 | | 2h^2+3h+2=0 | | x/xx=0 | | 3m-(m+2/5)=6 | | 135+39+x=180 | | 156+21+x=180 | | (x)(x+4)=621 | | X^2-4x=65/4 | | 40+61+x=180 | | 5+13+x=180 | | 3(x+2)=2x=21 | | 37+80+x=180 | | 1/3(6+x)-5=12x= | | -3.5=80t-16t^2 | | (X+20)2•(x+2)=90 | | (X+20)2(x+2)=90 | | X+202(x+2)=90 | | x+(.13x)=381.11 | | X+20+2(x+2)=90 | | -2x+6+3x=12 | | 6/x=0.12=48 | | 6/x-12=48 | | (3x^2-7x-30)=(7x^2+9x) | | -(x)/(30)+(2)/(5)=0 | | 28x+40x=190800 | | 2=-16.1t^2+75t | | 3+2x=18.1 | | (w+7)^2=2w^2+18w+37w= | | |6n+4|=38 |